Affiliation Department |
基礎類
|
Title |
Associate Professor |
External Link |
OTABE Shusuke
|
|
Degree
-
博士(理学) ( 2019.03 東北大学 )
-
修士(理学) ( 2016.03 東北大学 )
-
学士(理学) ( 2014.03 東北大学 )
From School
-
Tohoku University Faculty of Science Department of Mathematics Graduated
2010.04 - 2014.03
From Graduate School
-
Tohoku University Graduate School, Division of Natural Science Doctor's Course Completed
2016.04 - 2019.03
-
Tohoku University Graduate School, Division of Natural Science Master's Course Completed
2014.04 - 2016.03
External Career
-
Tokyo Denki University School of Engineering Department of Mathematics Assistant Professor
2021.04 - 2023.03
-
The University of Tokyo Institute for the Physics and Mathematics of the Universe JSPS Postdoctoral Research Fellow
2019.04 - 2021.03
-
Free University of Berlin JSPS Visiting Researcher
2018.04 - 2018.12
-
Tohoku University JSPS Research Fellow
2016.04 - 2019.03
Professional Memberships
Papers
-
On the mod p unramified cohomology of varieties having universally trivial Chow group of zero-cycles Reviewed
Shusuke Otabe
manuscripta mathematica 171 ( 1-2 ) 215 - 239 2022.03
Publishing type:Research paper (scientific journal) Publisher:Springer Science and Business Media LLC
DOI: 10.1007/s00229-022-01381-3
Other Link: https://link.springer.com/article/10.1007/s00229-022-01381-3/fulltext.html
-
Unramified logarithmic Hodge–Witt cohomology and $\mathbb{P}^1$-invariance Reviewed
Wataru Kai, Shusuke Otabe, Takao Yamazaki
Forum of Mathematics, Sigma 10 2022
Publishing type:Research paper (scientific journal) Publisher:Cambridge University Press (CUP)
Abstract
Let X be a smooth proper variety over a field k and suppose that the degree map ${\mathrm {CH } }_0(X \otimes _k K) \to \mathbb {Z}$ is isomorphic for any field extension $K/k$. We show that $G(\operatorname {Spec} k) \to G(X)$ is an isomorphism for any $\mathbb {P}^1$-invariant Nisnevich sheaf with transfers G. This generalises a result of Binda, Rülling and Saito that proves the same conclusion for reciprocity sheaves. We also give a direct proof of the fact that the unramified logarithmic Hodge–Witt cohomology is a $\mathbb {P}^1$-invariant Nisnevich sheaf with transfers.DOI: 10.1017/fms.2022.6
-
A generalized Abhyankar’s conjecture for simple Lie algebras in characteristic $p>5$ Reviewed
Shusuke Otabe, Fabio Tonini, Lei Zhang
Mathematische Annalen 383 ( 3-4 ) 1721 - 1774 2021.10
Publishing type:Research paper (scientific journal) Publisher:Springer Science and Business Media LLC
DOI: 10.1007/s00208-021-02269-5
Other Link: https://link.springer.com/article/10.1007/s00208-021-02269-5/fulltext.html
-
An embedding problem for finite local torsors over twisted curves Reviewed
Shusuke Otabe
Mathematische Nachrichten 294 ( 7 ) 1384 - 1427 2021.07
Publishing type:Research paper (scientific journal) Publisher:Wiley
Other Link: https://onlinelibrary.wiley.com/doi/full-xml/10.1002/mana.201900091
-
Semifinite bundles and the Chevalley–Weil formula Reviewed
Shusuke Otabe
Proceedings - Mathematical Sciences 128 ( 4 ) 2018.09
Publishing type:Research paper (scientific journal) Publisher:Springer Science and Business Media LLC
DOI: 10.1007/s12044-018-0423-2
Other Link: http://link.springer.com/content/pdf/10.1007/s12044-018-0423-2.pdf
-
On a purely inseparable analogue of the Abhyankar conjecture for affine curves Reviewed
Shusuke Otabe
Compositio Mathematica 154 ( 8 ) 1633 - 1658 2018.08
Publishing type:Research paper (scientific journal) Publisher:Wiley
Let<inline-formula><alternatives><inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0010437X18007194_inline1" /><tex-math>$U$</tex-math></alternatives></inline-formula>be an affine smooth curve defined over an algebraically closed field of positive characteristic. The Abhyankar conjecture (proved by Raynaud and Harbater in 1994) describes the set of finite quotients of Grothendieck’s étale fundamental group<inline-formula><alternatives><inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0010437X18007194_inline2" /><tex-math>$\unicode[STIX]{x1D70B}_{1}^{\acute{\text{e } }\text{t } }(U)$</tex-math></alternatives></inline-formula>. In this paper, we consider a purely inseparable analogue of this problem, formulated in terms of Nori’s profinite fundamental group scheme<inline-formula><alternatives><inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0010437X18007194_inline3" /><tex-math>$\unicode[STIX]{x1D70B}^{N}(U)$</tex-math></alternatives></inline-formula>, and give a partial answer to it.
-
An extension of Nori fundamental group Reviewed
Shusuke Otabe
Communications in Algebra 45 ( 8 ) 3422 - 3448 2017.08
Publishing type:Research paper (scientific journal) Publisher:Informa UK Limited
Misc
-
The tame fundamental group schemes of curves in positive characteristic
Shusuke Otabe
arXiv:1802.01111 2018.02
Presentations
-
On rationality and inverse Galois problems for the Witt algebras Invited International conference
小田部秀介
第24回名古屋国際数学コンファレンスModuli spaces and Arithmetic 2024.09
Event date: 2024.09
Language:English Presentation type:Oral presentation (general)
Venue:名古屋大学
-
不分岐コホモロジーと0次Suslinホモロジーについて Invited
小田部秀介
愛知数論セミナー 2023.07
Event date: 2023.07
Presentation type:Oral presentation (invited, special)
Venue:名城大学(名古屋)
-
射影Suslin複体の0次ホモロジーについて Invited
小田部秀介
東京電機大学数学講演会 2023.03
Event date: 2023.03
Presentation type:Oral presentation (invited, special)
Venue:東京電機大学千住キャンパス
Scientific Research Funds Acquisition Results
-
正標数における有理性問題と不分岐コホモロジー
Grant number:24K16894 2024.04 - 2029.03
日本学術振興会 科学研究費助成事業 若手研究
小田部 秀介
Authorship:Principal investigator
Grant amount:\4290000 ( Direct Cost: \3300000 、 Indirect Cost:\990000 )
-
有限群スキームに対する有理性問題
Grant number:21K20334 2021.08 - 2025.03
Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research Grant-in-Aid for Research Activity Start-up Grant-in-Aid for Research Activity Start-up
Shusuke Otabe
Grant type:Competitive
Grant amount:\3120000 ( Direct Cost: \2400000 、 Indirect Cost:\720000 )
-
代数曲線の族に付随する基本群スキームの比較準同型の研究とその応用
Grant number:19J00366 2019.04 - 2021.03
Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research Grant-in-Aid for JSPS Fellows Grant-in-Aid for JSPS Fellows
Shusuke Otabe
Authorship:Principal investigator
Grant amount:\4420000 ( Direct Cost: \3400000 、 Indirect Cost:\1020000 )
-
A study on a purely inseparable analogue of the Abhyankar conjecture for affine curves
2018.04 - 2018.12
Japan Society for the Promotion of Science Overseas Challenge Program for Young Researchers
Shusuke Otabe
-
基本群スキームの研究
Grant number:16J02171 2016.04 - 2019.03
Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research Grant-in-Aid for JSPS Fellows Grant-in-Aid for JSPS Fellows
Shusuke Otabe