OTABE Shusuke

写真a

Affiliation Department

基礎類
工学専攻 情報数理プログラム

Title

Associate Professor

External Link

Degree

  • 博士(理学) ( 2019.03   東北大学 )

  • 修士(理学) ( 2016.03   東北大学 )

  • 学士(理学) ( 2014.03   東北大学 )

Research Areas

  • Natural Science / Algebra

From School

  • Tohoku University   Faculty of Science   Department of Mathematics   Graduated

    2010.04 - 2014.03

      More details

From Graduate School

  • Tohoku University   Graduate School, Division of Natural Science   Doctor's Course   Completed

    2016.04 - 2019.03

  • Tohoku University   Graduate School, Division of Natural Science   Master's Course   Completed

    2014.04 - 2016.03

External Career

  • Tokyo Denki University   School of Engineering Department of Mathematics   Assistant Professor

    2021.04 - 2023.03

  • The University of Tokyo   Institute for the Physics and Mathematics of the Universe   JSPS Postdoctoral Research Fellow

    2019.04 - 2021.03

  • Free University of Berlin   JSPS Visiting Researcher

    2018.04 - 2018.12

  • Tohoku University   JSPS Research Fellow

    2016.04 - 2019.03

Professional Memberships

  • The Mathematical Society of Japan

    2017.09

      More details

 

Papers

  • On the mod p unramified cohomology of varieties having universally trivial Chow group of zero-cycles Reviewed

    Shusuke Otabe

    manuscripta mathematica   171 ( 1-2 )   215 - 239   2022.03

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media LLC  

    DOI: 10.1007/s00229-022-01381-3

    researchmap

    Other Link: https://link.springer.com/article/10.1007/s00229-022-01381-3/fulltext.html

  • Unramified logarithmic Hodge–Witt cohomology and $\mathbb{P}^1$-invariance Reviewed

    Wataru Kai, Shusuke Otabe, Takao Yamazaki

    Forum of Mathematics, Sigma   10   2022

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Cambridge University Press (CUP)  

    Abstract

    Let X be a smooth proper variety over a field k and suppose that the degree map ${\mathrm {CH } }_0(X \otimes _k K) \to \mathbb {Z}$ is isomorphic for any field extension $K/k$. We show that $G(\operatorname {Spec} k) \to G(X)$ is an isomorphism for any $\mathbb {P}^1$-invariant Nisnevich sheaf with transfers G. This generalises a result of Binda, Rülling and Saito that proves the same conclusion for reciprocity sheaves. We also give a direct proof of the fact that the unramified logarithmic Hodge–Witt cohomology is a $\mathbb {P}^1$-invariant Nisnevich sheaf with transfers.

    DOI: 10.1017/fms.2022.6

    researchmap

  • A generalized Abhyankar’s conjecture for simple Lie algebras in characteristic $p>5$ Reviewed

    Shusuke Otabe, Fabio Tonini, Lei Zhang

    Mathematische Annalen   383 ( 3-4 )   1721 - 1774   2021.10

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media LLC  

    DOI: 10.1007/s00208-021-02269-5

    researchmap

    Other Link: https://link.springer.com/article/10.1007/s00208-021-02269-5/fulltext.html

  • An embedding problem for finite local torsors over twisted curves Reviewed

    Shusuke Otabe

    Mathematische Nachrichten   294 ( 7 )   1384 - 1427   2021.07

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Wiley  

    DOI: 10.1002/mana.201900091

    researchmap

    Other Link: https://onlinelibrary.wiley.com/doi/full-xml/10.1002/mana.201900091

  • Semifinite bundles and the Chevalley–Weil formula Reviewed

    Shusuke Otabe

    Proceedings - Mathematical Sciences   128 ( 4 )   2018.09

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media LLC  

    DOI: 10.1007/s12044-018-0423-2

    researchmap

    Other Link: http://link.springer.com/content/pdf/10.1007/s12044-018-0423-2.pdf

  • On a purely inseparable analogue of the Abhyankar conjecture for affine curves Reviewed

    Shusuke Otabe

    Compositio Mathematica   154 ( 8 )   1633 - 1658   2018.08

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Wiley  

    Let<inline-formula><alternatives><inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0010437X18007194_inline1" /><tex-math>$U$</tex-math></alternatives></inline-formula>be an affine smooth curve defined over an algebraically closed field of positive characteristic. The Abhyankar conjecture (proved by Raynaud and Harbater in 1994) describes the set of finite quotients of Grothendieck’s étale fundamental group<inline-formula><alternatives><inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0010437X18007194_inline2" /><tex-math>$\unicode[STIX]{x1D70B}_{1}^{\acute{\text{e } }\text{t } }(U)$</tex-math></alternatives></inline-formula>. In this paper, we consider a purely inseparable analogue of this problem, formulated in terms of Nori’s profinite fundamental group scheme<inline-formula><alternatives><inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0010437X18007194_inline3" /><tex-math>$\unicode[STIX]{x1D70B}^{N}(U)$</tex-math></alternatives></inline-formula>, and give a partial answer to it.

    DOI: 10.1112/s0010437x18007194

    researchmap

  • An extension of Nori fundamental group Reviewed

    Shusuke Otabe

    Communications in Algebra   45 ( 8 )   3422 - 3448   2017.08

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Informa UK Limited  

    DOI: 10.1080/00927872.2016.1236936

    researchmap

Misc

  • On retract rationality for finite connected group schemes

    2024.09

     More details

  • The tame fundamental group schemes of curves in positive characteristic

    Shusuke Otabe

    arXiv:1802.01111   2018.02

     More details

Presentations

  • On rationality and inverse Galois problems for the Witt algebras Invited International conference

    小田部秀介

    第24回名古屋国際数学コンファレンスModuli spaces and Arithmetic  2024.09 

     More details

    Event date: 2024.09

    Language:English   Presentation type:Oral presentation (general)  

    Venue:名古屋大学  

    researchmap

  • 不分岐コホモロジーと0次Suslinホモロジーについて Invited

    小田部秀介

    愛知数論セミナー  2023.07 

     More details

    Event date: 2023.07

    Presentation type:Oral presentation (invited, special)  

    Venue:名城大学(名古屋)  

    researchmap

  • 射影Suslin複体の0次ホモロジーについて Invited

    小田部秀介

    東京電機大学数学講演会  2023.03 

     More details

    Event date: 2023.03

    Presentation type:Oral presentation (invited, special)  

    Venue:東京電機大学千住キャンパス  

    researchmap

Scientific Research Funds Acquisition Results

  • 正標数における有理性問題と不分岐コホモロジー

    Grant number:24K16894  2024.04 - 2029.03

    日本学術振興会  科学研究費助成事業  若手研究

    小田部 秀介

      More details

    Authorship:Principal investigator 

    Grant amount:\4290000 ( Direct Cost: \3300000 、 Indirect Cost:\990000 )

    researchmap

  • 有限群スキームに対する有理性問題

    Grant number:21K20334  2021.08 - 2025.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Research Activity Start-up  Grant-in-Aid for Research Activity Start-up

    Shusuke Otabe

      More details

    Grant type:Competitive

    Grant amount:\3120000 ( Direct Cost: \2400000 、 Indirect Cost:\720000 )

    researchmap

  • 代数曲線の族に付随する基本群スキームの比較準同型の研究とその応用

    Grant number:19J00366  2019.04 - 2021.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for JSPS Fellows  Grant-in-Aid for JSPS Fellows

    Shusuke Otabe

      More details

    Authorship:Principal investigator 

    Grant amount:\4420000 ( Direct Cost: \3400000 、 Indirect Cost:\1020000 )

    researchmap

  • A study on a purely inseparable analogue of the Abhyankar conjecture for affine curves

    2018.04 - 2018.12

    Japan Society for the Promotion of Science  Overseas Challenge Program for Young Researchers 

    Shusuke Otabe

      More details

  • 基本群スキームの研究

    Grant number:16J02171  2016.04 - 2019.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for JSPS Fellows  Grant-in-Aid for JSPS Fellows

    Shusuke Otabe

      More details

    Authorship:Principal investigator 

    Grant amount:\2500000 ( Direct Cost: \2500000 )

    researchmap