MISC - 田中 剛平

分割表示  72 件中 21 - 40 件目  /  全件表示 >>
  • パターン情報表現およびパターン情報処理を物理的に実現するニューラルネットワークデバイスとその利点

    廣瀬明, 田中剛平, 武田征士, 山根敏志, 沼田秀俊, 金澤直輝, HEROUX J. B, 中野大樹, 中根了昌

    電子情報通信学会技術研究報告   118 ( 470(NC2018 44-88)(Web) )   117‐120 (WEB ONLY)   2019年02月

     詳細を見る

    記述言語:日本語  

    J-GLOBAL

    researchmap

  • スピン波リザバーコンピューティングチップデバイス

    中根了昌, 田中剛平, 廣瀬明

    応用物理学会春季学術講演会講演予稿集(CD-ROM)   66th   ROMBUNNO.12p‐W933‐10   2019年02月

     詳細を見る

    記述言語:日本語  

    J-GLOBAL

    researchmap

  • 「ニューロ的」ハードウエアと物理リザバーコンピューティング

    廣瀬明, 武田征士, ヘロー ジャンベノ, 金澤直輝, 沼田英俊, 山根敏志, 中野大樹, 中根了昌, 田中剛平

    日本神経回路学会全国大会講演論文集   29th   2019年

     詳細を見る

  • 光波による物理リザバーコンピューテイング

    廣瀬明, 武田征士, HEROUX Jean Benoit, 沼田英俊, 金澤直輝, 山根敏行, 中野大樹, 中根了昌, 田中剛平

    Optics & Photonics Japan講演予稿集(CD-ROM)   2019   2019年

     詳細を見る

  • スピン波を用いた機械学習チップデバイス (特集 ニューロデバイスの研究最前線)—On-Chip Machine-Learning Device with Spin Waves

    中根 了昌, 田中 剛平, 廣瀬 明

    まぐね = Magnetics Japan   14 ( 6 )   329 - 334   2019年

     詳細を見る

    記述言語:日本語   出版者・発行元:日本応用磁気学会  

    CiNii Articles

    CiNii Books

    researchmap

  • スピン波リザバーコンピューティングチップにおける実空間情報分布

    市村剛大, 中根了昌, 田中剛平, 廣瀬明, 中根了昌, 田中剛平, 廣瀬明

    日本神経回路学会全国大会講演論文集   29th   2019年

     詳細を見る

  • 招待講演 複雑ネットワークの動的頑強性 (複雑コミュニケーションサイエンス)—Dynamical robustness of complex networks

    田中 剛平

    電子情報通信学会技術研究報告 = IEICE technical report : 信学技報   118 ( 316 )   33 - 38   2018年11月

     詳細を見る

    記述言語:日本語   出版者・発行元:電子情報通信学会  

    CiNii Articles

    CiNii Books

    researchmap

  • 複雑ネットワークの動的頑強性

    田中剛平

    電子情報通信学会技術研究報告   118 ( 316(CCS2018 33-45) )   33‐38   2018年11月

     詳細を見る

    記述言語:日本語  

    J-GLOBAL

    researchmap

  • 多段階学習Echo state networkによる非線形時系列予測

    秋山貴則, 田中剛平, 田中剛平

    電子情報通信学会技術研究報告   118 ( 284(IBISML2018 44-104)(Web) )   293‐299 (WEB ONLY)   2018年10月

     詳細を見る

    記述言語:日本語  

    J-GLOBAL

    researchmap

  • ハードウェアで実現するリザバーコンピューティング

    中野大樹, 沼田英俊, 山根敏志, 武田征士, HEROUX Jean Benoit, 金澤直樹, 田中剛平, 中根了昌, 廣瀬明

    電気学会全国大会講演論文集(CD-ROM)   2018   ROMBUNNO.S16‐4   2018年03月

     詳細を見る

    記述言語:日本語  

    J-GLOBAL

    researchmap

  • 大規模停電を想定した電力系統モデルにおけるカスケード故障 (非線形問題)

    瀧澤 雄登, 田中 剛平

    電子情報通信学会技術研究報告 = IEICE technical report : 信学技報   117 ( 121 )   63 - 66   2017年07月

     詳細を見る

    記述言語:日本語   出版者・発行元:電子情報通信学会  

    CiNii Articles

    CiNii Books

    researchmap

  • リザーバ・コンピューティングにおける複素ニューラルネットワーク

    廣瀬明, 武田征士, 田中剛平, 中根了昌, 山根敏志, 中野大樹, 中川茂

    電子情報通信学会大会講演論文集(CD-ROM)   2017   2017年

     詳細を見る

  • 興奮性振動子結合系における自発的な振動現象

    森野 佳生, 田中 剛平, 合原 一幸

    日本物理学会講演概要集   72.1 ( 0 )   3035 - 3035   2017年

     詳細を見る

    記述言語:日本語   出版者・発行元:一般社団法人 日本物理学会  

    <p>今回の発表では,興奮性を示す位相振動子を結合した系において,結合強度を強化することで起こる自発的振動現象の解析結果について報告する.今回の系では結合強度を上げることで安定平衡点がサドルノード分岐により消失して自発的な振動が生じるが,全ての素子が振動を開始する場合と一部の素子のみが振動を開始する場合がパラメータにより分かれる.この振動開始のメカニズムを分岐解析によって詳細に解析した結果を報告する.</p>

    DOI: 10.11316/jpsgaiyo.72.1.0_3035

    CiNii Articles

    researchmap

  • 外部フィードバック・レーザを用いたリザーバコンピューティング

    武田征士, 山根敏志, 中野大樹, 田中剛平, 中根了昌, 廣瀬明, 中川茂

    電子情報通信学会大会講演論文集(CD-ROM)   2017   2017年

     詳細を見る

  • 非線形物理ダイナミクスによるリザーバ・コンピューティング

    山根敏志, 武田征士, 中野大樹, 田中剛平, 中根了昌, 廣瀬明, 中川茂

    電子情報通信学会大会講演論文集(CD-ROM)   2017   2017年

     詳細を見る

  • ニューロン特性の不均一性を考慮したエコーステートネットワーク

    田中剛平, 中根了昌, 山根敏志, 中野大樹, 武田征士, 中川茂, 廣瀬明

    電子情報通信学会大会講演論文集(CD-ROM)   2017   2017年

     詳細を見る

  • 細胞システムの動態と分岐理論

    田中 剛平

    生物物理   56 ( 6 )   340 - 344   2016年

     詳細を見る

    記述言語:日本語   出版者・発行元:一般社団法人 日本生物物理学会  

    DOI: 10.2142/biophys.56.340

    CiNii Articles

    CiNii Books

    researchmap

  • A pruning method based on weight variation information for feedforward neural networks

    Zhiqiang Tong, Gouhei Tanaka

    IFAC-PapersOnLine   28 ( 18 )   221 - 226   2015年11月

     詳細を見る

    記述言語:英語  

    Artificial neural networks are powerful tools for many information processing tasks such as pattern recognition, data mining, optimization, and prediction. It is a significant problem to find optimal structures of artificial neural networks for drawing out their high computational performance. Downsizing of network structure is also an issue to be considered for hardware implementation of largescale neural networks. In this study, we propose a pruning method to find a compact structure of feedforward neural networks with high generalization ability in classification problems. Our method evaluates the significance of neuron nodes using the information on weight variation in the training process and prune the insignificant nodes preferentially unless the classification accuracy is degraded. Numerical experiments with several benchmark datasets show that the proposed method is effective compared with other methods.

    DOI: 10.1016/j.ifacol.2015.11.040

    Scopus

    researchmap

  • A hybrid model for hepatitis B virus

    Ben-Gong Zhang, Gouhei Tanaka, Kazuyuki Aihara, Masao Honda, Shuichi Kaneko, Luonan Chen

    IFAC-PapersOnLine   28 ( 18 )   37 - 40   2015年11月

     詳細を見る

    記述言語:英語  

    The hepatitis B virus (HBV) is a kind of pandemic infectious disease. It is becoming a major health problem in Asian and African countries, however, less so in other areas around the world. There is a vast background for studying HBV. However, some problems still require further study. For example, when the patient is infected by HBV, how to arrange the treatment schedule? Using long term continuous treatment or others? Therefore, we wish to readdress the study of HBV. First, we propose a new hybrid model that contains both continuous and discrete variables. Second, we analyze its dynamical behavior. We hope that this study may provide some new insight for HBV disease and some new guidance for the therapy.

    DOI: 10.1016/j.ifacol.2015.11.007

    Scopus

    researchmap

  • Dynamical robustness of complex biological networks

    Gouhei Tanaka, Kai Morino, Kazuyuki Aihara

    Mathematical Approaches to Biological Systems: Networks, Oscillations, and Collective Motions   29 - 53   2015年01月

     詳細を見る

    記述言語:英語   出版者・発行元:Springer Japan  

    Dynamical behavior of biological systems is maintained by interactions between biological units such as neurons, cells, proteins, and molecules. It is a challenging issue to understand robustness of biological interaction networks from a viewpoint of dynamical systems. In this chapter, we introduce the concept of dynamical robustness in complex networks and demonstrate its application to biological networks. First, we introduce the framework for studying the dynamical robustness through analyses of coupled Stuart-Landau oscillators with various types of network structures. Second, based on the framework, we examine the dynamical robustness of neuronal firing activity in networks of synaptically coupled Morris- Lecar neuron models. Our analyses suggest that a consideration of both network structure and dynamics is crucial in elucidating biological robustness.

    DOI: 10.1007/978-4-431-55444-8_2

    Scopus

    researchmap

このページの先頭へ▲