CHIKAMI Noboru

写真a

Affiliation Department

Department of Computer Science
Department of Computer Science

Title

Associate Professor

External Link

Degree

  • 博士(理学) ( 2015.03   東北大学 )

External Career

  • Tohoku University   Graduate School of Science   Assistant Professor

    2016.06 - 2018.03

      More details

    Country:Japan

  • Osaka University   Graduate School of Engineering Science   Special researcher of the Japan Society for the Promotion of Science

    2018.04 - 2019.12

      More details

    Country:Japan

  • Osaka University   Graduate School of Engineering Science   Lecturer

    2019.04 - 2019.12

      More details

    Country:Japan

Professional Memberships

  • Mathematical Society of Japan

    2014.04

 

Papers

  • Well-posedness and global dynamics for the critical Hardy-Sobolev parabolic equation Reviewed International journal

    Noboru Chikami, Masahiro Ikeda, Koichi Taniguchi

    Nonlinearity   34 ( 11 )   2021.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:IOP Publishing Ltd & London Mathematical Society  

    Other Link: https://iopscience.iop.org/article/10.1088/1361-6544/ac2c90

  • Composition estimates and well-posedness for Hardy–Hénon parabolic equations in Besov spaces Reviewed

    Noboru Chikami

    Journal of Elliptic and Parabolic Equations   2019.12

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media {LLC}  

    DOI: 10.1007/s41808-019-00039-8

  • Global Well-Posedness and Time-Decay Estimates of the Compressible Navier–Stokes–Korteweg System in Critical Besov Spaces Reviewed

    Noboru Chikami, Takayuki Kobayashi

    Journal of Mathematical Fluid Mechanics   21 ( 2 )   2019.06

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media {LLC}  

    DOI: 10.1007/s00021-019-0431-8

  • On Gagliardo-Nirenberg type inequalities in Fourier-Herz spaces Reviewed

    Chikami Noboru

    JOURNAL OF FUNCTIONAL ANALYSIS   275 ( 5 )   1138 - 1172   2018.09

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.jfa.2018.06.001

    Web of Science

  • On the global existence and time decay estimates in critical spaces for the Navier-Stokes-Poisson system Reviewed International coauthorship

    Noboru Chikami, Raphael Danchin

    MATHEMATISCHE NACHRICHTEN   290 ( 13 )   1939 - 1970   2017.09

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:WILEY-V C H VERLAG GMBH  

    We are concerned with the study of the Cauchy problem for the Navier-Stokes-Poisson system in the critical regularity framework. In the case of a repulsive potential, we first establish the unique global solvability in any dimension n >= 2 for small perturbations of a linearly stable constant state. Next, under a suitable additional condition involving only the low frequencies of the data and in the L-2-critical framework (for simplicity), we exhibit optimal decay estimates for the constructed global solutions, which are similar to those of the barotropic compressible Navier-Stokes system. Our results rely on new a priori estimates for the linearized Navier-Stokes-Poisson system about a stable constant equilibrium, and on a refined time-weighted energy functional. (C) 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    DOI: 10.1002/mana.201600238

    Other Link: http://orcid.org/0000-0002-3107-2088

  • Well-posedness of the compressible Navier-Stokes-Poisson system in the critical Besov spaces Reviewed

    Noboru Chikami, Takayoshi Ogawa

    JOURNAL OF EVOLUTION EQUATIONS   17 ( 2 )   717 - 747   2017.06

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPRINGER BASEL AG  

    We consider the Cauchy problem of the compressible Navier-Stokes system coupled with a Poisson equation. We give the optimal well-posedness in terms of scaling in the Besov framework. The results include the case of two dimensions, which is not treated in previous results.

    DOI: 10.1007/s00028-016-0334-6

    Other Link: http://orcid.org/0000-0002-3107-2088

  • WELL-POSEDNESS OF THE COMPRESSIBLE NAVIER-STOKES-POISSON SYSTEM IN BESOV SPACES (Mathematical Analysis in Fluid and Gas Dynamics)

    Chikami Noboru, Ogawa Takayoshi

    RIMS Kokyuroku   ( 1985 )   144 - 158   2016.04

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Kyoto University  

    CiNii Articles

  • On the well-posedness of the full compressible Navier-Stokes system in critical Besov spaces Reviewed International coauthorship

    Noboru Chikami, Raphael Danchin

    JOURNAL OF DIFFERENTIAL EQUATIONS   258 ( 10 )   3435 - 3467   2015.05

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    We are concerned with the Cauchy problem of the full compressible Navier Stokes equations satisfied by viscous and heat conducting fluids in R-n. We focus on the so-called critical Besov regularity framework. In this setting, it is natural to consider initial densities rho(0), velocity fields u(0) and temperatures theta(0) with a(0) := rho(0) - 1 is an element of (B) over dot(p,1)(n/p), u(0) is an element of (B) overp dot(p,1)(n/p-1) and theta(0) (B)over dot(p,1)(n/p-2). After recasting the whole system in Lagrangian coordinates, and working with the total energy along the flow rather than with the temperature, we discover that the system may be solved by means of Banach fixed point theorem in a critical functional framework whenever the space dimension is n >= 2, and 1 < p < 2n. Back to Eulerian coordinates, this allows to improve the range of p's for which the system is locally well-posed, compared to [7]. (C) 2015 Elsevier Inc. All rights reserved.

    DOI: 10.1016/j.jde.2015.01.012

    Other Link: http://orcid.org/0000-0002-3107-2088

  • THE BLOW-UP CRITERION FOR THE COMPRESSIBLE NAVIER-STOKES SYSTEM WITH A YUKAWA-POTENTIAL IN THE CRITICAL BESOV SPACE Reviewed

    Noboru Chikami

    DIFFERENTIAL AND INTEGRAL EQUATIONS   27 ( 9-10 )   801 - 820   2014.09

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:KHAYYAM PUBL CO INC  

    We give a refined blow-up criterion for the solution for the compressible Navier-Stokes system with a Yukawa-potential in the critical Besov space [13]. The result may be considered as a compressible counterpart of the results for. the incompressible Navier-Stokes system.

    Other Link: http://orcid.org/0000-0002-3107-2088

Presentations

  • Optimal well-posedness of Hardy–H ́enon parabolic equation

    千頭昇

    日本数学会2021年度秋季分科会   千葉大学

     More details

    Event date: 2021.09

    Language:English   Presentation type:Oral presentation (general)  

    Venue:千葉大学  

  • Optimal well-posedness and forward self-similar solution for the Hardy-He ́non parabolic equation International conference

    Noboru Chikami

    13th International ISAAC Congress  ISAAC, Ghent University

     More details

    Event date: 2021.08

    Language:English   Presentation type:Oral presentation (general)  

    Venue:Ghent, Belgium  

  • Hardy-H'enon parabolic equation in weighted Lebesgue space Invited

    千頭昇

    名古屋微分方程式セミナー  杉本充,菱田俊明,加藤淳,寺澤祐高

     More details

    Event date: 2021.04

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:名古屋大学  

  • Hardy-H¥'enon型半線型熱方程式の解の挙動 International conference

    千頭昇,谷口晃一,池田正弘

    日本数学会2020年度秋季分科会  日本数学会

     More details

    Event date: 2020.09

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:熊本大学(オンライン開催)  

Scientific Research Funds Acquisition Results

  • 燃焼と流体の大域ダイナミクス解析

    2021.04

    科学研究費補助金  若手研究

    千頭昇

      More details

    本研究の目的は,流体力学の基礎方程式である Navier-Stokes 系や,燃焼や化学反応系,人口密 度,天体構造等の時間発展を記述する半線形熱方程式の適切性や解の安定性・大域ダイナミクスを 解析することである.物理数学に現れる多くの非線形偏微分方程式は,非線形項の形によっては 変分構造を持ち,何らかの形で解を制御する固有の物理量が現れる.このような物理量が時間に 関して単調性を持つ時,これによって時間大域的な解のダイナミクスや安定性,特異性形成,ま た,対応する定常問題のソリトン的な特殊解が果たす解の漸近挙動への影響等が解析できる.本 研究では,必要な解析技術の整備を行い,主に解の臨界正則性に着眼し,流体や燃焼の物理方程 式の適切性・安定性解析と,解の挙動の初期値による詳細な分類を目指す.

  • 調和解析による圧縮性粘性流体の臨界適切性理論の構築

    2018.04 - 2019.12

    科学研究費補助金  特別研究員奨励費

    千頭昇

      More details

    様々な物理的設定の下で, 圧縮性粘性流体を記述する基礎方程式系と, 関連する初期値問題の「臨界適切性」について, 関数解析学的・調和解析学的な手法を用いた研究を行う.

  • 圧縮性粘性流体と関連する諸問題の安定性解析

    2017.04

    科学研究費補助金  若手研究(B)

    千頭昇

      More details

    本研究の目的は気体力学の基礎方程式である圧縮性 Navier-Stokes 系の臨界適切性を示し, 解の安定性, 及び時間無限大での漸近挙動を解析することである. 圧縮性 Navier-Stokes 系は, 圧力の変化に応じて密度が変位する圧縮性流れを数学的に定式化したモデルであり, 状態方程式の選び方によって様々な気体状態を表す. 偏微分方程式論の観点からは, 多くの圧縮性流れは非線形の双曲型放物型混合系で表され, 斉次非圧縮性粘性流体と異なり, 密度遷移に由来する分散性と, 粘性に由来するエネルギー消散の両方が流れに影響を及ぼす. 本研究では主に解の臨界正則性に着眼し圧縮性流れの解析を行い, 初期摂動が高速振動する流れを含む場合の気体力学の安定性理論の構築を目標とする.

  • 圧縮性 Navier-Stokes-Poisson 系の解の存在と挙動について

    2013.04 - 2015.03

    科学研究費補助金  特別研究員奨励費

    千頭昇

      More details

    流体力学の基礎方程式の一つである圧縮性 Navier-Stokes 系に対する適切性の考察.